Monday, October 10, 2016

RethinkDB must relicense NOW

What is RethinkDB?

UPDATE:  Several months after I wrote this post, RethinkDB was relicensed.  For the CoCalc project, it was too late, and by then we had already switched to PostgreSQL


RethinkDB is a INCREDIBLE high quality polished open source realtime database that is easy to deploy, shard, replicate, and supports a reactive client programming model, which is useful for collaborative web-based applications. Shockingly, the 7-year old company that created RethinkDB has just shutdown. I am the CEO of a company, SageMath, Inc., that uses RethinkDB very heavily, so I have a strong interest in RethinkDB surviving as an independent open source project.

Three Types of Open Source Projects

There are many types of open source projects. RethinkDB was the type of open source project where most work on RethinkDB has been fulltime focused work, done by employees of the RethinkDB company. RethinkDB is licensed under the AGPL, but the company promised to make the software available to customers under other licenses.

Academia: I started the SageMath open source math software project in 2005, which has over 500 contributors, and a relatively healthy volunteer ecosystem, with about hundred contributors to each release, and many releases each year. These are mostly volunteer contributions by academics: usually grad students, postdocs, and math professors. They contribute because SageMath is directly relevant to their research, and they often contribute state of the art code that implements algorithms they have created or refined as part of their research. Sage is licensed under the GPL, and that license has worked extremely well for us. Academics sometimes even get significant grants from the NSF or the EU to support Sage development.

Companies: I also started the Cython compiler project in 2007, which has had dozens of contributors and is now the defacto standard for writing or wrapping fast code for use by Python. The developers of Cython mostly work at companies (e.g., Google) as a side project in their spare time. (Here's a message today about a new release from a Cython developer, who works at Google.) Cython is licensed under the Apache License.

What RethinkDB Will Become

RethinkDB will no longer be an open source project whose development is sponsored by a single company dedicated to the project. Will it be an academic project, a company-supported project, or dead?

A friend of mine at Oxford University surveyed his academic CS colleagues about RethinkDB, and they said they had zero interest in it. Indeed, from an academic research point of view, I agree that there is nothing interesting about RethinkDB. I myself am a college professor, and understand these people! Academic volunteer open source contributors are definitely not going to come to RethinkDB's rescue. The value in RethinkDB is not in the innovative new algorithms or ideas, but in the high quality carefully debugged implementations of standard algorithms (largely the work of bad ass German programmer Daniel Mewes). The RethinkDB devs had to carefully tune each parameter in those algorithms based on extensive automated testing, user feedback, the Jepsen tests, etc.

That leaves companies. Whether or not you like or agree with this, many companies will not touch AGPL licensed code:
"Google open source guru Chris DiBona says that the web giant continues to ban the lightning-rod AGPL open source license within the company because doing so "saves engineering time" and because most AGPL projects are of no use to the company."
This is just the way it is -- it's psychology and culture, so deal with it. In contrast, companies very frequently embrace open source code that is licensed under the Apache or BSD licenses, and they keep such projects alive. The extremely popular PostgreSQL database is licensed under an almost-BSD license. MySQL is freely licensed under the GPL, but there are good reasons why people buy a commercial MySQL license (from Oracle) for MySQL. Like RethinkDB, MongoDB is AGPL licensed, but they are happy to sell a different license to companies.

With RethinkDB today, the only option is AGPL. This very strongly discourage use by the only possible group of users and developers that have any chance to keep RethinkDB from death. If this situation is not resolved as soon as possible, I am extremely afraid that it never will be resolved. Ever. If you care about RethinkDB, you should be afraid too. Ignoring the landscape and culture of volunteer open source projects is dangerous.

A Proposal

I don't know who can make the decision to relicense RethinkDB. I don't kow what is going on with investors or who is in control. I am an outsider. Here is a proposal that might provide a way out today:

PROPOSAL: Dear RethinkDB, sell me an Apache (or BSD) license to the RethinkDB source code. Make this the last thing your company sells before it shuts down. Just do it.


Hacker News Discussion

Friday, October 7, 2016

RethinkDB, SageMath, Andreessen-Horowitz, Basecamp and Open Source Software

RethinkDB and sustainable business models

Three weeks ago, I spent the evening of Sept 12, 2016 with Daniel Mewes, who is the lead engineer of RethinkDB (an open source database). I was also supposed to meet with the co-founders, Slava and Michael, but they were too busy fundraising and couldn't join us. I pestered Daniel the whole evening about what RethinkDB's business model actually was. Yesterday, on October 6, 2016, RethinkDB shut down.

I met with some RethinkDB devs because an investor who runs a fund at the VC firm Andreessen-Horowitz (A16Z) had kindly invited me there to explain my commercialization plans for SageMath, Inc., and RethinkDB is one of the companies that A16Z has invested in. At first, I wasn't going to take the meeting with A16Z, since I have never met with Venture Capitalists before, and do not intend to raise VC. However, some of my advisors convinced me that VC's can be very helpful even if you never intend to take their investment, so I accepted the meeting.

In the first draft of my slides for my presentation to A16Z, I had a slide with the question: "Why do you fund open source companies like RethinkDB and CoreOS, which have no clear (to me) business model? Is it out of some sense of charity to support the open source software ecosystem?" After talking with people at Google and the RethinkDB devs, I removed that slide, since charity is clearly not the answer (I don't know if there is a better answer than "by accident").

I have used RethinkDB intensely for nearly two years, and I might be their biggest user in some sense. My product SageMathCloud, which provides web-based course management, Python, R, Latex, etc., uses RethinkDB for everything. For example, every single time you enter some text in a realtime synchronized document, a RethinkDB table gets an entry inserted in it. I have RethinkDB tables with nearly 100 million records. I gave a talk at a RethinkDB meetup, filed numerous bug reports, and have been described by them as "their most unlucky user". In short, in 2015 I bet big on RethinkDB, just like I bet big on Python back in 2004 when starting SageMath. And when visiting the RethinkDB devs in San Francisco (this year and also last year), I have said to them many times "I have a very strong vested interest in you guys not failing." My company SageMath, Inc. also pays RethinkDB for a support contract.

Sustainable business models were very much on my mind, because of my upcoming meeting at A16Z and the upcoming board meeting for my company.  SageMath, Inc.'s business model involves making money from subscriptions to SageMathCloud (which is hosted on Google Cloud Platform); of course, there are tons of details about exactly how our business works, which we've been refining based on customer feedback. Though absolutely all of our software is open source, what we sell is convenience, easy of access and use, and we provide value by hosting hundreds of courses on shared infrastructure, so it is much cheaper and easier for universities to pay us rather than hosting our software themselves (which is also fairly easy). So that's our business model, and I would argue that it is working; at least our MRR is steadily increasing and is more than twice our hosting costs (we are not cash flow positive yet due to developer costs).

So far as I can determine, the business model of RethinkDB was to make money in the following ways: 1. Sell support contracts to companies (I bought one). 2. Sell a closed-source proprietary version of RethinkDB with extra features that were of interest to enterprise (they had a handful of such features, e.g., audit logs for queries). 3. Horizon would become a cloud-hosted competitor to Firebase, with unique advantages that users have the option to migrate from the cloud to their own private data center, and more customizability. This strategy depends on a trend for users to migrate away from the cloud, rather than to it, which some people at RethinkDB thought was a real trend (I disagree).

I don't know of anything else they were seriously trying right now. The closed-source proprietary version of RethinkDB also seemed like a very recent last ditch effort that had only just begun; perhaps it directly contradicted a desire to be a 100% open source company?

With enough users, it's easier to make certain business models work. I suspect RethinkDB does not have a lot of real users. Number of users tends to be roughly linearly related to mailing list traffic, and the RethinkDB mailing list has an order of magnitude less traffic compared to the SageMath mailing lists, and SageMath has around 50,000 users. RethinkDB wasn't even advertised to be production ready until just over a year ago, so even they were telling people not to use it seriously until relatively recently. The adoption cycle for database technology is slow -- people wisely wait for Aphyr's tests, benchmarks comparing with similar technology, etc. I was unusual in that I chose RethinkDB much earlier than most people would, since I love the design of RethinkDB so much. It's the first database I loved, having seen a lot over many decades.

Conclusion: RethinkDB wasn't a real business, and wouldn't become one without year(s) more runway.

I'm also very worried about the future of RethinkDB as an open source project. I don't know if the developers have experience growing an open source community of volunteers; it's incredibly hard and its unclear they are even going to be involved. At a bare minimum, I think they must switch to a very liberal license (Apache instead of AGPL), and make everything (e.g., automated testing code, documentation, etc) open source. It's insanely hard getting any support for open source infrastructure work -- support mostly comes from small government grants (for research software) or contributions from employees at companies (that use the software). Relicensing in a company friendly way is thus critical.

Company Incentives

Companies can be incentived in various ways, including:
  • to get to the next round of VC funding
  • to be a sustainable profitable business by making more money from customers than they spend, or
  • to grow to have a very large number of users and somehow pivot to making money later.
When founding a company, you have a chance to choose how your company will be incentived based on how much risk you are willing to take, the resources you have, the sort of business you are building, the current state of the market, and your model of what will happen in the future.

For me, SageMath is an open source project I started in 2004, and I'm in it for the long haul. I will make the business I'm building around SageMathCloud succeed, or I will die trying -- therefore I have very, very little tolerance for risk. Failure is not an option, and I am not looking for an exit. For me, the strategy that best matches my values is to incentive my company to build a profitable business, since that is most likely to survive, and also to give us the freedom to maintain our longterm support for open source and pure mathematics software.

Thus for my company, neither optimizing for raising the next round of VC or growing at all costs makes sense. You would be surprised how many people think I'm completely wrong for concluding this.

Andreessen-Horowitz

I spent the evening with RethinkDB developers, which scared the hell out of me regarding their business prospects. They are probably the most open source friendly VC-funded company I know of, and they had given me hope that it is possible to build a successful VC-funded tech startup around open source. I prepared for my meeting at A16Z, and deleted my slide about RethinkDB.

I arrived at A16Z, and was greeted by incredibly friendly people. I was a little shocked when I saw their nuclear bomb art in the entry room, then went to a nice little office to wait. The meeting time arrived, and we went over my slides, and I explained my business model, goals, etc. They said there was no place for A16Z to invest directly in what I was planning to do, since I was very explicit that I'm not looking for an exit, and my plan about how big I wanted the company to grow in the next 5 years wasn't sufficiently ambitious. They were also worried about how small the total market cap of Mathematica and Matlab is (only a few hundred million?!). However, they generously and repeatedly offered to introduce me to more potential angel investors.

We argued about the value of outside investment to the company I am trying to build. I had hoped to get some insight or introductions related to their portfolio companies that are of interest to my company (e.g., Udacity, GitHub), but they deflected all such questions. There was also some confusion, since I showed them slides about what I'm doing, but was quite clear that I was not asking for money, which is not what they are used to. In any case, I greatly appreciated the meeting, and it really made me think. They were crystal clear that they believed I was completely wrong to not be trying to do everything possible to raise investor money.

Basecamp

During the first year of SageMath, Inc., I was planning to raise a round of VC, and was doing everything to prepare for that. I then read some of DHH's books about Basecamp, and realized many of those arguments applied to my situation, given my values, and -- after a lot of reflection -- I changed my mind. I think Basecamp itself is mostly closed source, so they may have an advantage  in building a business. SageMathCloud (and SageMath) really are 100% open source, and building a completely open source business might be harder. Our open source IP is considered worthless by investors. Witness: RethinkDB just shut down and Stripe hired just the engineers -- all the IP, customers, etc., of RethinkDB was evidently considered worthless by investors.

The day after the A16Z meeting, I met with my board, which went well (we discussed a huge range of topics over several hours). Some of the board members also tried hard to convince me that I should raise a lot more investor money.

Will Poole: you're doomed

Two weeks ago I met with Will Poole, who is a friend of a friend, and we talked about my company and plans. I described what I was doing, that everything was open source, that I was incentivizing the company around building a business rather than raising investor money. He listened and asked a lot of follow up questions, making it very clear he understands building a company very, very well.

His feedback was discouraging -- I said "So, you're saying that I'm basically doomed." He responded that I wasn't doomed, but might be able to run a small "lifestyle business" at best via my approach, but there was absolutely no way that what I was doing would have any impact or pay for my kids college tuition. If this was feedback from some random person, it might not have been so disturbing, but Will Poole joined Microsoft in 1996, where he went on to run Microsoft's multibillion dollar Windows business. Will Poole is like a retired four-star general that executed a successful campaign to conquer the world; he been around the block a few times. He tried pretty hard to convince me to make as much of SageMathCloud closed source as possible, and to try to convince my users to make content they create in SMC something that I can reuse however I want. I felt pretty shaken and convinced that I needed to close parts of SMC, e.g., the new Kubernetes-based backend that we spent all summer implementing. (Will: if you read this, though our discussion was really disturbing to me, I really appreciate it and respect you.)

My friend, who introduced me to Will Poole, introduced me to some other people and described me as that really frustrating sort of entrepreneur who doesn't want investor money. He then remarked that one of the things he learned in business school, which really surprised him, was that it is good for a company to have a lot of debt. I gave him a funny look, and he added "of course, I've never run a company".

I left that meeting with Will convinced that I would close source parts of SageMathCloud, to make things much more defensible. However, after thinking things through for several days, and talking this over with other people involved in the company, I have chosen not to close anything. This just makes our job harder. Way harder. But I'm not going to make any decisions based purely on fear. I don't care what anybody says, I do not think it is impossible to build an open source business (I think Wordpress is an example), and I do not need to raise VC.

Hacker News Discussion: https://news.ycombinator.com/item?id=12663599

Chinese version: http://www.infoq.com/cn/news/2016/10/Reflection-sustainable-profit-co

Wednesday, October 5, 2016

SageMath: "it's not research"

The University of Washington (UW) mathematics department has funding for grad students to "travel to conferences". What sort of travel funding?

  • The department has some money available.
  • The UW Graduate school has some money available: They only provide funding for students giving a talk or presenting a poster.
  • The UW GPSS has some money available: contact them directly to apply (they only provide funds for "active conference participation", which I think means giving a talk, presenting a poster, or similar)

One of my two Ph.D. students at UW asked our Grad program director: "I'll be going to Joint Mathematics Meetings (JMM) to help out at the SageMath booth. Is this a thing I can get funding for?"

ANSWER: Travel funds are primarily meant to support research, so although I appreciate people helping out at the SageMath booth, I think that's not the best use of the department's money.

I think this "it's not research" perspective on the value of mathematical software is unfortunate and shortsighted. Moreover, it's especially surprising as the person who wrote the above answer has contributed substantially to the algebraic topology functionality of Sage itself, so he knows exactly what Sage is.

Sigh. Can some blessed person with an NSF grant out there pay for this grad student's travel expenses to help with the Sage booth? Or do I have to use the handful of $10, $50, etc., donations I've got the last few months for this purpose?

Tuesday, July 26, 2016

Jupyter: "take the domain name down immediately"

The Jupyter notebook is an open source BSD-licensed browser-based code execution environment, inspired by my early work on the Sage Notebook (which we launched in 2007), which was in turn inspired heavily by Mathematica notebooks and Google docs. Jupyter used to be called IPython.

SageMathCloud is an open source web-based environment for using Sage worksheets, terminals, LaTeX documents, course management, and Jupyter notebooks. I've put much hard work into making it so that multiple people can simultaneously edit Jupyter notebooks in SageMathCloud, and the history of all changes are recorded and browsable via a slider.

Many people have written to me asking for there to be a modified version of SageMathCloud, which is oriented around Jupyter notebooks instead of Sage worksheets. So the default file type is Jupyter notebooks, the default kernel doesn't involve the extra heft of Sage, etc., and the domain name involves Jupyter instead of "sagemath". Some people are disuased from using SageMathCloud for Jupyter notebooks because of the "SageMath" name.

Dozens of web applications (including SageMathCloud) use the word "Jupyter" in various places. However, I was unsure about using "jupyter" in a domain name. I found this github issue and requested clarification 6 weeks ago. We've had some back and forth, but they recently made it clear that it would be at least a month until any decision would be considered, since they are too busy with other things. In the meantime, I rented jupytercloud.com, which has a nice ring to it, as the planet Jupiter has clouds. Yesterday, I made jupytercloud.com point to cloud.sagemath.com to see what it would "feel like" and Tim Clemans started experimenting with customizing the page based on the domain name that the client sees. I did not mention jupytercloud.com publicly anywhere, and there were no links to it.

Today I received this message:

    William,

    I'm writing this representing the Jupyter project leadership
    and steering council. It has recently come to the Jupyter
    Steering Council's attention that the domain jupytercloud.com
    points to SageMathCloud. Do you own that domain? If so,
    we ask that you take the domain name down immediately, as
    it uses the Jupyter name.

I of course immediately complied. It is well within their rights to dictate how their name is used, and I am obsessive about scrupulously doing everything I can to respect people's intellectual property; with Sage we have put huge amounts of effort into honoring both the letter and spirit of copyright statements on open source software.

I'm writing this because it's unclear to me what people really want, and I have no idea what to do here.

1. Do you want something built on the same technology as SageMathCloud, but much more focused on Jupyter notebooks?

2. Does the name of the site matter to you?

3. What model should the Jupyter project use for their trademark? Something like Python? like Git?Like Linux?  Like Firefox?  Like the email program PINE?  Something else entirely?

4. Should I be worried about using Jupyter at all anywhere? E.g., in this blog post? As the default notebook for the SageMath project?

I appreciate any feedback.

Hacker News Discussion

UPDATE (Aug 12, 2016): The official decision is that I cannot use the domain jupytercloud.com.   They did say I can use jupyter.sagemath.com or sagemath.com/jupyter.   Needless to say, I'm disappointed, but I fully respect their (very foolish, IMHO) decision.


Wednesday, February 24, 2016

Elliptic curves: Magma versus Sage

Elliptic Curves

Elliptic curves are certain types of nonsingular plane cubic curves, e.g., y^2 = x^3 + ax +b, which are central to both number theory and cryptography (e.g., they are used to compute the hash in bitcoin).


Magma and Sage

If you want to do a wide range of explicit computations with elliptic curves, for research purposes, you will very likely use SageMath or Magma. If you're really serious, you'll use both.

Both Sage and Magma are far ahead of all other software (e.g., Mathematica, Maple and Matlab) for elliptic curves.

A Little History

When I started contributing to Magma in 1999, I remember that Magma was way, way behind Pari. I remember having lunch with John Cannon (founder of Magma), and telling him I would no longer have to use Pari if only Magma would have dramatically faster code for computing point counts on elliptic curves.

A few years later, John wisely hired Mark Watkins to work fulltime on Magma, and Mark has been working there for over a decade. Mark is definitely one of the top people in the world at implementing (and using) computational number theory algorithms, and he's ensured that Magma can do a lot. Some of that "do a lot" means catching up with (and surpassing!) what was in Pari and Sage for a long time (e.g., point counting, p-adic L-functions, etc.)

However, in addition, many people have visited Sydney and added extremely deep functionality for doing higher descents to Magma, which is not available in any open source software. Search for Magma in this paper to see how, even today, there seems to be no open source way to compute the rank of the curve y2 = x3 + 169304x + 25788938.  (The rank is 0.)

Two Codebases

There are several elliptic curves algorithms available only in Magma (e.g., higher descents) ... and some available only in Sage (L-function rank bounds, some overconvergent modular symbols, zeros of L-functions, images of Galois representations). I could be wrong about functionality not being in Magma, since almost anything can get implemented in a year...

The code bases are almost completely separate, which is a very good thing. Any time something gets implemented in one, it gets (or should get) tested via a big run on elliptic curves up to some bound in the other. This sometimes results in bugs being found. I remember refereeing the "integral points" code in Sage by running it against all curves up to some bound and comparing to what Magma output, and getting many discrepancies, which showed that there were bugs in both Sage and Magma.
Thus we would be way better off if Sage could do everything Magma does (and vice versa).



Tuesday, February 23, 2016

"If you were new faculty, would you start something like SageMathCloud sooner?"

I was recently asked by a young academic: "If you were a new faculty member again, would you start something like SageMathCloud sooner or simply leave for industry?" The academic goes on to say "I am increasingly frustrated by continual evidence that it is more valuable to publish a litany of computational papers with no source code than to do the thankless task of developing a niche open source library; deep mathematical software is not appreciated by either mathematicians or the public."

I wanted to answer that "things have gotten better" since back in 2000 when I started as an academic who does computation. Unfortunately, I think they have gotten worse. I do not understand why. In fact, this evening I just received the most recent in a long string of rejections by the NSF.

Regarding a company versus taking a job in industry, for me personally there is no point in starting a company unless you have a goal that can only be accomplished via a company, since building a business from scratch is extremely hard and has little to do with math or research. I do have such a goal: "create a viable open source alternative to Mathematica, etc...". I was very clearly told by Michael Monagan (co-founder of Maplesoft) in 2006 that this goal could not be accomplished in academia, and I spent the last 10 years trying to prove him wrong.

On the other hand, leaving for a job in industry means that your focus will switch from "pure" research to solving concrete problems that make products better for customers. That said, many of the mathematicians who work on open source math software do so because they care so much about making the experience of using math software much better for the math community. What often drives Sage developers is exactly the sort of passionate care for "consumer focus" and products that also makes one successful in industry. I'm sure you know exactly what I mean, since it probably partly motivates your work. It is sad that the math community turns its back on such people. If the community were to systematically embrace them, instead of losing all these $300K+/year engineers to mathematics entirely -- which is exactly what we do constantly -- the experience of doing mathematics could be massively improved into the future. But that is not what the community has chosen to do. We are shooting ourselves in the foot.

Now that I have seen how academia works from the inside over 15 years I'm starting to understand a little why these things change very slowly, if ever. In the mathematics department I'm at, there are a small handful of research areas in pure math, and due to how hiring works (voting system, culture, etc.) we have spent the last 10 years hiring in those areas little by little (to replace people who die/retire/leave). I imagine most mathematics departments are very similar. "Open source software" is not one of those traditional areas. Nobody will win a Fields Medal in it.

Overall, the mathematical community does not value open source mathematical software in proportion to its value, and doesn't understand its importance to mathematical research and education. I would like to say that things have got a lot better over the last decade, but I don't think they have. My personal experience is that much of the "next generation" of mathematicians who would have changed how the math community approaches open source software are now in industry, or soon will be, and hence they have no impact on academic mathematical culture. Every one of my Ph.D. students are now at Google/Facebook/etc.

We as a community overall would be better off if, when considering how we build departments, we put "mathematical software writers" on an equal footing with "algebraic geometers". We should systematically consider quality open source software contributions on a potentially equal footing with publications in journals.

To answer the original question, YES, knowing what I know now, I really wish I had started something like SageMathCloud sooner. In fact, here's the previously private discussion from eight years ago when I almost did.

--

- There is a community generated followup ...

Wednesday, February 10, 2016

Open source is now ready to compete with Mathematica for use in the classroom



When I think about what makes SageMath different, one of the most fundamental things is that it was created by people who use it every day.  It was created by people doing research math, by people teaching math at universities, and by computer programmers and engineers using it for research.  It was created by people who really understand computational problems because we live them.  We understand the needs of math research, teaching courses, and managing an open source project that users can contribute to and customize to work for their own unique needs.

The tools we were using, like Mathematica, are clunky, very expensive, and just don't do everything we need.  And worst of all, they are closed source software, meaning that you can't even see how they work, and can't modify them to do what you really need.  For teaching math, professors get bogged down scheduling computer labs and arranging for their students to buy and install expensive software.

So I started SageMath as an open source project at Harvard in 2004, to solve the problem that other math software is expensive, closed source, and limited in functionality, and to create a powerful tool for the students in my classes.  It wasn't a project that was intended initially as something to be used by hundred of thousands of people.  But as I got into the project and as more professors and students started contributing to the project, I could clearly see that these weren't just problems that pissed me off, they were problems that made everyone angry.

The scope of SageMath rapidly expanded.  Our mission evolved to create a free open source serious competitor to Mathematica and similar closed software that the mathematics community was collective spending hundreds of millions of dollars on every year. After a decade of work by over 500 contributors, we made huge progress.

But installing SageMath was more difficult than ever.  It was at that point that I decided I needed to do something so that this groundbreaking software that people desperately needed could be shared with the world.

So I created SageMathCloud, which is an extremely powerful web-based collaborative way for people to easily use SageMath and other open source software such as LaTeX, R, and Jupyter notebooks easily in their teaching  and research.   I created SageMathCloud based on nearly two decades of experience using math software in the classroom and online, at Harvard, UC San Diego, and University of Washington.

SageMathCloud is commercial grade, hosted in Google's cloud, and very large classes are using it heavily right now.  It solves the installation problem by avoiding it altogether.  It is entirely open source.

Open source is now ready to directly compete with Mathematica for use in the classroom.  They told us we could never make something good enough for mass adoption, but we have made something even better.  For the first time, we're making it possible for you to easily use Python and R in your teaching instead of Mathematica; these are industry standard mainstream open source programming languages with strong support from Google, Microsoft and other industry leaders.   For the first time, we're making it possible for you to collaborate in real time and manage your course online using the same cutting edge software used by elite mathematicians at the best universities in the world.

A huge community in academia and in industry are all working together to make open source math software better at a breathtaking pace, and the traditional closed development model just can't keep up.

Friday, January 15, 2016

Thinking of using SageMathCloud in a college course?

SageMathCloud course subscriptions

"We are  college instructors of the calculus sequence and ODE’s.  If the college were to purchase one of the upgrades for us as we use Sage with our students, who gets the benefits of the upgrade?  Is is the individual students that are in an instructor’s Sage classroom or is it the  collaborators on an instructor’s project?"

If you were to purchase just the $7/month plan and apply the upgrades to *one* single project, then all collaborators on that one project would benefit from those upgrades while using that project.

If you were to purchase a course plan for say $399/semester, then you could apply the upgrades (network access and members only hosting) to 70 projects that you might create for a course.   When you create a course by clicking +New, then "Manage a Course", then add students, each student has their own project created automatically.  All instructors (anybody who is a collaborator on the project where you clicked "Manage a course") is also added to the student's project. In course settings you can easily apply the upgrades you purchase to all projects in the course.  

Also I'm currently working on a new feature where instructors may choose to require all students in their course to pay for the upgrade themselves.  There's a one time $9/course fee paid by the student and that's it.  At some colleges (in some places) this is ideal, and at other places it's not an option at all.   I anticipate releasing this very soon.





Getting started with SageMathCloud courses


You can fully use the SMC course functionality without paying anything in order to get familiar with it and test it out.  The main benefit of paying is that you get network access and all projects get moved to members only servers, which are much more robust; also, we greatly prioritize support for paying customers.   

This blog post is an overview of using SMC courses:

  http://www.beezers.org/blog/bb/2015/09/grading-in-sagemathcloud/

This has some screenshots and the second half is about courses:

  http://blog.ouseful.info/2015/11/24/course-management-and-collaborative-jupyter-notebooks-via-sagemathcloud/

Here are some video tutorials made by an instructor that used SMC with a large class in Iceland recently:

  https://www.youtube.com/watch?v=dgTi11ZS3fQ
  https://www.youtube.com/watch?v=nkSdOVE2W0A
  https://www.youtube.com/watch?v=0qrhZQ4rjjg

Note that the above videos show the basics of courses, then talk specifically about automated grading of Jupyter notebooks.  That might not be at all what you want to do -- many math courses use Sage worksheets, and probably don't automate the grading yet.

Regarding using Sage itself for teaching your courses, check out the free pdf book to "Sage for Undergraduates" here, which the American Mathematical Society just published (there is also a very nice print version for about $23):

   http://www.gregorybard.com/SAGE.html

Friday, January 8, 2016

Mathematics Graduate School: preparation for non-academic employment

This is about my personal experience as a mathematics professor whose students all have non-academic jobs that they love. This is in preparation for a panel at the Joint Mathematics Meetings in Seattle.

My students and industry
My graduated Ph.D. students:
  • 3 at Google
  • 1 at Facebook
  • 1 at CCR
My graduating student (Hao Chen):
  • Applying for many postdocs
  • But just did summer internship at Microsoft Research with Kristin. (I’ve had four students do summer internships with Kristin)
All my students:
  • Have done a lot of Software development, maybe having little to do with math, e.g., “developing the Cython compiler”, “transition the entire Sage project to git”, etc.
  • Did a thesis squarely in number theory, with significant theoretical content.
  • Guilt (or guilty pleasure?) spending time on some programming tasks instead of doing what they are “supposed” to do as math grad students.

Me: academia and industry

  • Math Ph.D. from Berkeley in 2000; many students of my advisor (Lenstra) went to work at CCR after graduating…
  • Academia: I’m a tenured math professor (since 2005) – number theory.
  • Industry: I founded a Delaware C Corp (SageMath, Inc.) one year ago to “commercialize Sage” due to VERY intense frustration trying to get grant funding for Sage development. Things have got so bad, with so many painful stupid missed opportunities over so many years, that I’ve given up on academia as a place to build Sage.
Reality check: Academia values basic research, not products. Industry builds concrete valuable products. Not understanding this is a recipe for pain (at least it has been for me).

Advice for students from students

Robert Miller (Google)

My student Robert Miller’s post on Facebook yesterday: “I LOVE MY JOB”. Why: “Today I gave the first talk in a seminar I organized to discuss this result: ‘Graph Isomorphism in Quasipolynomial Time’. Dozens of people showed up, it was awesome!”
Background: When he was my number theory student, working on elliptic curves, he gave a talk about graph theory in Sage at a Sage Days (at IPAM). His interest there was mainly in helping an undergrad (Emily Kirkman) with a Sage dev project I hired her to work on. David Harvey asked: “what’s so hard about implementing graph isomorphism”, and Robert wanted to find out, so he spent months doing a full implementation of Brendan McKay’s algorithm (the only other one). This had absolutely nothing to do with his Ph.D. thesis work on the Birch and Swinnerton-Dyer conjecture, but I was very supportive.

Craig Citro (Google)

Craig Citro did a Ph.D. in number theory (with Hida), but also worked on Sage aLOT as a grad student and postdoc. He’s done a lot of hiring at Google. He says: “My main piece of advice to potential google applicants is ‘start writing as much code as you can, right now.’ Find out whether you’d actually enjoyworking for a company like Google, where a large chunk of your job may be coding in front of a screen. I’ve had several friends from math discover (the hard way) that they don’t really enjoy full-time programming (any more than they enjoy full-time teaching?).”
“Start throwing things on github now. Potential interviewers are going to check out your github profile; having some cool stuff at the top is great, but seeing a regular stream of commits is also a useful signal.”

Robert Bradshaw (Google)

“A lot of mathematicians are good at (and enjoy) programming. Many of them aren’t (and don’t). Find out. Being involved in Sage is significantly more than just having taken a suite of programming courses or hacking personal scripts on your own: code reviews, managing bugs, testing, large-scale design, working with others’ code, seeing projects through to completion, and collaborating with others, local and remote, on large, technical projects are all important. It demonstrates your passion.”

Rado Kirov (Google)

Robert Bradshaw said it before me, but I have to repeat. Large scale software development requires exposure to a lot of tooling and process beyond just writing code - version control, code reviews, bug tracking, code maintenance, release process, coordinating with collaborators. Contributing to an active open-source project with a large number of contributors like Sage, is a great way to experience all that and see if you would like to make it your profession. A lot of mathematicians write clever code for their research, but if less than 10 people see it and use it, it is not a realistic representation of what working as a software engineer feels like. 

The software industry is in large demand of developers and hiring straight from academia is very common. Before I got hired by Google, the only software development experience on my resume was the Sage graph editor. Along with solid understanding of algorithms and data structures that was enough to get in."

David Moulton (Google)

“Google hires mathematicians now as quantitative analysts = data engineers. Google is very flexible for a tech company about the backgrounds of its employees. We have a long-standing reading group on category theory, and we’re about to start one on Babai’s recent quasi- polynomial-time algorithm for graph isomorphism. And we have a math discussion group with lots of interesting math on it.”

My advice for math professors

Obviously, encourage your students to get involved in open source projects like Sage, even if it appears to be a waste of time or distraction from their thesis work (this will likely feel very counterintuitive you’ll hate it).
At Univ of Washington, a few years ago I taught a graduate-level course on Sage development. The department then refused to run it again as a grad course, which was frankly very frustrating to me. This is exactly the wrong thing to do if you want to increase the options of your Ph.D. students for industry jobs. Maybe quit trying to train our students to be only math professors, and instead give them a much wider range of options.